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RESIDUES AND CHARACTERISTIC CLASSES FOR
RIEMANNIAN FOLIATIONS

CONNOR LAZAROV & JOEL PASTERNACK

Introduction

In [9] we began a study of characteristic classes for Riemannian foliations.
Here we shall continue this study. The basic technique which we will use will
be to start with a Killing vector field on R*™ with a single nondegenerate
singularity at the origin and consider the resulting (4m — 2)-codimensional
Riemannian foliation on a (4m — 1)-sphere $*~!. Given an Ad-invariant
homogeneous polynomial of degree 2m we relate the Bott residue of the vector
field determined by this polynomial and the Simons characteristic number
associated to the foliation on $*™~! and this polynomial. By mapping various
classical groups onto S$‘™~! and looking at the induced Riemannian foliations,
we will obtain infinite classes of examples of families of foliations with trivial
normal bundles for which appropriate exotic characteristic classes vary con-
tinuously.

As a consequence of these examples we obtain complete results on contin-
uous variation in some of the possible dimensions where variation can occur.
Namely, continuous variation does occur for classes in H**"'(RW,,,_,) (see
§ 1). A basis for H»~(RW,,,_,) is given by p;, - - - p;,h; where 4(j, + - - - + j;)
4+ 4i, — 1 =4m — 1 and i <j, if k > 0. Call this monomial p;h,. Let FRI",
denote the fiber of BRI", — BGL(g).

Theorem (3.5). The map H'™ '(RW,,,_,) —>H“’" ‘(FRZ’m .} IS injective.
The classes psh; all vary continuously.

We will also conclude the uncountability of the homotopy groups
z4'rn—}.(FIQZ—'M?L-J)-

In §1 we recall some basic facts and establish some notation. In §2 we
prove the basic results relating various connections which will enable us to
deduce the relation between the residue and the Simons numbers. In § 3 we
exhibit the examples of continuous families of Riemannian foliations with trivial
normal bundles on various classical groups for which appropriate exotic classes
vary continuously. We also examine the homotopy of FRI .

We are greatly indebted to Professor James Heitsch for pointing out to us
that Theorem (3.5) follows from our computations and for pointing out certain
“hiatuses” which occurred in our original version of this paper.

Received September 13, 1974, and, in revised form, February 24, 1975.
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1. Some basic notions

In [9] we introduced the complexes RW,. For convenience, we omit men-
tion of the Euler class in this paper. For ¢ = 2n or ¢ = 2n + 1 we take the
Pontryagin polynomials p, on the Lie algebra of GL(g) defined by

q
Det (Zlq — _;;A) = kZo (A", pr=gu -

Let
RWq = R[pl, Dz, - - '5p[q/2]]/{P]degP > Q} ®A(h1> hz, . ':hq) s

where degp, = 4k,degh, = 4k — 1. The differential in this complex is
dp, = 0, dh,, = p,. Let & be a Riemannian foliation with trivial normal
bundle on a manifold M, ¥ the unique Riemannian torsion free connection on
the normal bundle, y a global frame of the normal bundle, and /7 the flat
connection relative to y. This data determines a degree-preserving map

0: RW, — A*(M)

given by é(p,) = px(K()), 6k, = 4,7, V7). This map passes to a map §* in
cohomology.

An analysis identical to that in [6] yields a basis for H*(RW,). Namely, let
I=(@, i), =C(, --,J) {, = the smallest element of I (or oo if I is
empty), and j, = the smallest element of J (or o if J is empty). Then a basis
for H*(RW ,) consists of those monomials p;4; such that deg p,h; > g, 4, +
deg p,y > g, and i, < j,. Algebraically, we have an isomorphism

H"(BO(@4m — 2)) — H"™ Y (RW 1n_2)

given by sending p;, <+ - p;,, With 4(i, + - .- + i) =4dmand i, < i, < - .- <,
to h;,p;, - - - Pg,- On the other hand,

H™(BO(4m — 2)) —> H'"(BO(4m)) —> H'n(BT*™) |

where 7™ is the maximal torus on O(4sm), and the image consists of all sym-
metric homogeneous polynomials (%, - - -, #,) of degree 4m in two-dimen-
sional classes 7, « « -, fop-

At this point we need a few simple facts about Simons cohomology classes.
Let E be a g-dimensional vector bundle over a manifold M, V a connection
on E, and ¢ an Ad-invariant polynomial on gl (g) which determines an inte-
gral cohomology class such that ¢(K(F)) = 0. Then we have a Simons
cohomology class S.(F).

Lemma (1.1). If E is trivial with global framing s, and V* is globally flat
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relative to s, then
4,7, 7 =S, mod Z .

Proof. We know 4,(F,V*®) = s*Te(V) from [9, 1.16]. On the other hand
[14, Corollary (3.18)] implies s*Te(F) = S,(F), mod Z.

Lemma (1.2). Let F be a trivial k-plane bundle with global framing s, and
V¢ flat relative to s. Let ¢ be an Ad-invariant polynomial on gl (q + k). Then
S,(7 @) = S,7).

Proof. Let n =g + k. Let G, 5 be the Grassmannian of »n-planes in N-
space. Let 7, be the universal n-plane bundle, and I* the universal connection
on 7,. For N large there are a map f: M- G, » and a covering map frE— T
such that f\(F*) =V, as in [14, (3.5)]. The framing s determines a bundle
map f: E@F — 1, @ (k) such that f:(F* @ F’) =V @ I°, where I’ is globally
flat relative to the canonical framing of (k). By naturality, it is enough to show
S,7*@r) = S,F*) for for Simons characters. Now we follow [18, (3.5)].
Let 2" be the curvature of /7, and 2 the curvature of '* @ J’. Then

Q=(“Q" 0).
0 0

So () = ¢(2"). By the definition of Simons characters for Z,,_(G, »), if
X € ZZZ-l(Gn,N)5 then mx = 3}7, and

.07 @ Px = L(p(2) — a)x = L@ — a)x = 5,7,
m m

where « is any cochain representing the integral class associated to ¢, and bar
denotes reduction mod Z.

We note that f*S,(F) = S,(f~'F).

In analogy to the definitions of [1] we need the notion of an X connection.
Let X be a Killing vector field on a Riemannian manifold M with isolated
nondegenerate singularities p,, - - -, p,. An X connection J is a connection on
T(M) with the property that there are mutually disjoint open sets U}, ---, U,
with p; ¢ U; and such that on M — U U,,V,Y = f{X,Y] + D_,,Y, where
=, is the orthogonal projection in the direction of X, n,Z = fX, =, the orthog-
onal projection perpendicular to X, and D is the Riemannian torsion free con-
nection on T'(M). U U; will be called the support of J/.

By way of notation, D, D’ will always be used to symbolize the Riemannian
connection on a manifold, whereas V, I’’, etc. will be other connections on
T(M) or on other bundles. If Y is a tangent vector, | Y| will denote (Y, Y%
where {, > is the relevant metric. If X is a Killing vector field with isolated
nondegenerate singularity at p, and ¢ an invariant polynomial, then as in [2],
Res, (X, p) = ¢(L,)/{Det (L,)}'/* where L, is the linear transformation (£y),.
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Let & be a foliation on a manifold M. By a flat coordinate system we will,
as is customary, mean local coordinates x,, - -+, X,, ¥y, - - -, ¥, such that the
leaves are given locally by y, =¢,, -+, y, = ¢,.

Note. Let ¢ be an Ad-invariant homogeneous polynomial function on
gl (m). We will say ¢ determines an integral class if, for any connection,
[o(K(F))] is in the image of H*(M ; Z).

2. Simons classes and the residue

Let X be a Killing field on R*® with a single nondegenerate singularity at the
origin. The metric on R** is the standard one denoted by {, >. Let & be the
resulting Riemannian foliation on $?»~!, and / the unique Riemannian torsion
free connection on the normal bundle to &#. Let ¢ be an Ad-invariant homo-
geneous polynomial of degree n on gl (2n — 2) which determines an integral
class. In this section we will prove

Theorem (2.12). 59(17)[52"“] = ¢ Res, (X, 0), mod Z, where ¢ is a non-
zero constant depending only on n and would be 1 if the residue were normal-
ized.

Note. This is of significance only when n is even. Let (xy, y;, - -+, X5, ¥,)
be coordinates in R*™*. We will be primarily concerned with

2 7 3
x= jZ=:1 a]{yjaxj xjayj} '

Let V be an X-connection on R** with support contained in the interior of
B From the definition we observe that away from the origin, V'Y = [X, Y]
and V;Y =D,Y for Z | X. LettingV, D also denote J, D restricted to
T(R*™)|$**! we see immediately, from the definition of the induced connec-
tion, that the same holds on T(R**)|S% ",

Let R = 3%, {x;0/0x; + y;6/8y;}..Let V be the (trivial) vector bundle on
S$#~1 generated by X and R. Let s’ be the orthonormal framing {R/|R],
X/jX}of V. LetV’ = F|V, that s, if g, is the orthogonal projection of T(R*")
on V then V'Y = q,(V;Y). Let Y, = R/|R|and Y, = X/|X|.

Theorem (2.1). V'’ is flat relative to the framing s’ of V.

Proof. V and hence I’ are Riemannian connections. Thus 'Y, = aY, and
V'Y, = —aY, where a is a 1-form on §**°!. Thena=F'Y,, Y > =FY,, Y >.
Now

aX) = FxY,, Y1) =<[X, Y], Y1) = X(1/|R]XR, X} + <{[X,R], Y,)/IR|.

Now (R, X> = 0. Using X(X,R> = {[X, X1, R) + (X, [X, R])> (since X is
Killing) we find that {[X,R],X> = 0 and so {[X,R],Y,> = 0. Thus a(X)
= 0. Now let Z be tangent to $*~! and normal to X. Then

a(Z) = VYo, Y ) =<D;Yo, Y ) = Z(/IRIKR, Y > + (DzR, Y,)/IR| .
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Now (R, Y,> =0, and also Z(1/|R]) = O since Z is tangent to S$*~'. It is
immediate that (D,R,Y,> = (Z,Y,> = 0 since Z is perpendicular to X.
Thus a(Z) = 0. So a = 0, and 7’ is flat relative to s’.

Let v be the orthogonal complement to &% = (X) on S§**~'. Let g, be the
orthogonal projection from T(R**)|S**~'to v, and let /"' = F|v = g, F.

Theorem (2.2). ['” is the unique Riemannian torsion free connection on v.

Proof. Letp,: T(§* ') — & and p,: T(5**~') — v be the orthogonal projec-
tions. Let D’ be the Riemannian connection on §**~!. As we know, the unique
torsion free Riemannian connection  on v is given by V,Y =p,pZ, Y] +
p.D, ;Y. First take Z = X. Then 7Y = p,[X, Y], ¢V Y = ¢{[X, Y] +
D_xY} = q,[X, Y]. (Recall, in T(R*™), =, is orthogonal projection on X and
x, is orthogonal projection perpendicular to X). Now [X, Y] is tangent to S**~!
and ¢,[X, Y] = #,[X, Y]. Next take Z tangent to S**~! and perpendicular to
X. Then /,Y = p,D}Y. Since D’ = 7o D where = is orthogonal projection
from T(R*™) — T(S**~Y), V,Y = pxD,Y = ¢,D,Y. Now F)Y = qV,Y =
q,D,;Y. Thus ¥ = p".

Remark. From now on, the unique Riemannian torsion free connection on
v will be denoted by .

We now take two connections on T(R**)|S**~!, namely, / induced from an
X-connection and V'’ @ P corresponding to T(R*®) |$*"™! = V @ v. Let ¢ be
an Ad-invariant polynomial on gl(2r) of degree n. We want to compare ¥ and
rrer”, ie., to compute 4,(F, V" @ V).

Let x, ¥, - -+, Yan_, be local coordinates on $**~* such that X = 4/dx, (on
some open set U). Let

f: U— R¥?

be given by f(x, ¥, -« s Van_2) = ¥y, «++, Van_s). Let & be the connection
matrix of F’ relative to {Y,, 3/0x,}, let §” be the connection matrix of /' rela-
tive to {3/dy,, ---,3/0¥:_,} and & the conmection matrix of F relative to
{¥0,0/0x,,0/8Yy5 + -+, 0/0Von s}

Lemma (2.3). & = f*(o’) for some matrix of 1-forms o’ on R*7%,

Proof. V'Y,=0by (2.1). V'(3/ox) =V'(X) =V (X|Y,) =d|X]Y, by
(2.2). Thus we merely have to show that d[X]| is in the image of f*. Now
d|X| = adx, + Y, bydy,. Apply to X to get X(X|) = a. Now X{X, X =
2{[X,X],X> =0. Thus X(X[) = 0 and hence X(|X|) = 0. Thus a = 0.
The fact that X((X|) = O also shows that |X| is constant along the integral
curves of X. Let ¢, be the local 1-parameter group for X. Then [X}c ¢, = |X|.
Let m e U and let ¢ be small. Then

P (d1XD{8/0Ys}n = 2 balelm)er(dyn){o/oy;} -

Now y, is constant on the integral curves of X, so ¢f(dy;) = dy, and
o (dy){8/8y;} = 6;5. Thus of(d|XD{8/3y;}m = b;(p,(m)). But oF(d|X])-
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{0/0x}m = @)Y )Xo @)p = (3/0Y)( X Dp = d|X|{3/0Y;}m = b;(m). Thus
b;(m) = b,(p,(m)) for all small ¢ and all j. It follows that b, is independent
of x,, and so d|X| = 3 b.(y,, * + +, Yen_2)dY; is in the image of f*.

Remark (2.4). 68" = f*(«") for some matrix o” of 1-forms on R**~2, This
is one of the steps in proving the vanishing theorem for Riemannian foliations
[111.

Lemma (2.5). 8 = f*(w) for some matrix of 1-forms » on R*~2.

Proof. Let p ={Y,,9/0x,,6/¥,, ---,0/0Y:m_,; be the above local framing
for T(R?™)|$**~*. Write § = ||#*/], where

0% = a¥dx, + ¥, b¥dy, .
Then
V?y = 775 . SO va = 7]0(X) = 77”(1”“ .

Now [X, Y,] = X(1/|RDR + [X,R]/|R| = O, since |R| is constant on the
integral curves of a Killing field and we have seen [X,R] = 0. [X,X]1 =0
and [X, 8/9y;] = [8/0x,,8/9y;] = 0. Since V' yy = [X, 5], we have y|[a”’|| =0
and so [[&*7|| = 0. Next choose local vector fields Z,, - - -, Z,,_, such that
Z{y,) =4d;,and Z, | X for all j. Let ¢, be the 1-parameter group for X.
@, §71 — §#71 js am isometry since X is a Killing field. We want to show
that each b¥/ is independent of x,, and to do this it will be sufficient to show
that ¢f(by/) = b¥/ for small . Now y, o, = y, and so ¢, (Z){yi} = ;-
Since Z; | X, we have that V', = D,_. Since ¢, is an isometry, ¢;(D) = D.
Now

@;I(D)ijy = ¢Z§<(Dw,*(zj)50t,*?)
= SD;,;(S%,*(??) ° 6(S0L,*Zj)) =7¢° ﬁ(SDL*ZJ') .

Hence ¢;7 (D) = 90 0(¢:,+(Z,)), and ;' (D) z 7 = Dz7. S0 70 6(¢,;,.(Z;)) =
700(Z,).

Now ¢(Z) = 3 by Z,(yy) = bY. 6%(p,,.2Z)) = Z of(bieXdy){Z)}) =
0¥ (DY) since ¢F(dy,) = dy,. Thus

7|61l = 7 lloF (B |

for each i, j, k and small ¢. Hence b¥/ = ¢} (bY) .

Remark (2.6). If we consider I/ on R?** outside its support, and choose flat
coordinates x;, ¥, - - -, Yzr_: 00 R*™ for X, then it follows, just as in the pre-
ceeding proof, that the connection form for V' depends only on ¥, - -+, Yon_15
i.e., is pulled back from R**~'. In particular, if ¢ is an invariant polynomial
of degree n on gl(2r), then o(K(F)) = O outside the support of F7.

We shall now compare the connections ¥ and V' @ F” on T(R*™)|S*"%.
Choose local framings 7’ for V, %" for v, and » = (y',%"”) for ¥V @ v (the »’s
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need not necessarily be asin (2.3), - - -, (2.6)). Let ¢, 8", 8 be the corresponding
/

connection matrices. Let §, = (% 0(,),) Then 4, is the connection matrix for
V'@ r” relative to 5. Let 0 =8 — 6,. Form the connection F* =t/ + (1 ~ O’
@7 on St x I. Let p: §?*~! x I — §?*~* be the projection. The connection
matrix of F* relative to p~'(y) is 6* = 6, + to, and the curvature matrix is
Kt = dto + tdo + t[v,6,] + t*%¢* + K,, where K, = df, + 6;. Let ¢ be an
invariant polynomial on gl{2n) of degree n. Then 4,(F, ¥ @ V") = p {o(KH}.
Now

PloEN =n 7 [telo Ao + oD A (D7 A KDt
T+ j+k=n—~
where we do not care what [ is.

Lemma (2.7). dos + [0, 8., 0, ¢, K, are ail tensorial.

Proof. A form 6 coming from a connection and a framing 7 is tensorial if,
relative to n4, @ becomes 464!, Now there forms are tensorial by direct
computation.

Theorem (2.8). 4,7, V@V =0.

Proof. 1t is enough to show that each term

oo N\ (do + B, d)! AN ANKH =0, i+j+hk=n—1.

Since each entry ¢, do + [6,, ], K, are tensorial, and ¢ is Ad-invariant, this
term remains unchanged if we use the framings ', 3, 5 in (2.3), - - -, (2.6). In
this case we have f: U — R™ 2 f(x;, ¥, ** *» Yones) = 1, * + +» Yan_s), and each
entry is in the image of f*. Thus (e A (do + [6,, o] A (6 A KF) is in
FF(A7"Y(R*™?) and so is identically zero.

Let ¢ be Ad-invariant polynomial of degree » which determines an integral

class. Let s ={Y,Y,,Y,, ---,Y,,,} be a local orthonormal framing of
T(R*™)|S§"~1. Let F* be the connection which is flat relative to s. Then s =
{Y,, -+, Y,,_,} is a local orthonormal framing of v, the normal bundle to the

foliation. Let I’*"" be flat relative to s”.

Theorem (2.9). 4,7,V =4, @V", V) + dz.

Proof. For any three connections 4,(F°, F'*) + 4,(F*, F*) + 4,(F*, V°) = dz,
and 4,7, 7)) = —4,F,, V). Nowlet PP =V, ' =P, P =" @F”. Then
4,7 F% = 0 by (2.8) and the resuit follows.

Theorem (2.10). S () = S, (V).

Note. Recall from § 1, S,( ) is the Simons cohomology class in H**~*(S"~",
R/Z).

Proof. Choose local framings s as in (2.9) where the first two vectors Y,, Y,

are always R/|R}, X/|X|. The local connection matrix for I’ @ F” is (8 09,) (s
= (¢, s) where &' = {R/IR|, X/|X|}) since F’ is flat relative to s’. Then
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4,7 @V, 7y = 4,F”, V). From our discussion of Simons classes in § 1 it
follows that S, (F) = S, (F").

Next we must relate the Simons characteristic number S, (F)[S**~'] to
Res, (X, 0). This is essentially the Bott residue theorem. Let J/ be an X-con-
nection supported in an open set U with U C interior B*". Let ¢ be an invari-
ant polynomial on gl(2n) of degree n.

Theorem (2.11), (Bott residue theorem for B™).

Lﬂ S(K(7)) = c Res, (X, 0) .

Remark. The approach to the proof for a Killing field X on a manifold M
with isolated nondegenerate singularities is to compare I and D (the Riemannian
connection on M) and to examine 4,(/, D) near the singularities. This is done
in [2]. However for the uninitiated reader, we will carry out this analysis in the
case we will need it, namely,

X = él a;{y0/0x; — x,8/3y;} , the o’s are near 1.

Proof in this special case. Let B, = {x|3 (a&x} + a&y?) < &%), We can
alway choose an X-conmection which is supported on U and am & so that
U & B, C interior B**. Let §, = 9B,. Change coordinates. Let u; = a,x;,
v; = a;y;. Then B, = {x| ¥} (1§ + v2) < ¢%}. Let us consider the global framing
n of T(R*) given by y = {3/0x,,2/dy,, - -+, 8/0x,,8/8y,}. Then, relative to »
and outside U, 'y, = = ® [X, 5] where  is the 1-form #(¥Y) = (X, Y /<X, X).
Notice that D is flat relative to » and K(D) = 0. Let 8 be the connection form

for 7 relative to . Then § = # ® L where L = Diag <[_?a‘ %’]) On
R x I form Pt =t + (1 — 0)D. Let p:R*™ x I — R?, The connection and
curvature matrices of ¥ relative to p~i(p) are tr @ Land dt n Q L 4 tdr @ L.

Thus
P+((K?)) = 4,(V, D) = z(dm)"'o(L) .
By (2.6), o(K(F)) = 0 outside U, so
[, o®@) = [ o0&k = [ a1,0,0) = o) _stamy=+.
Now
7= 3 adydn — xdv) [ 5 el + 59

Thus on S,
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1 1
T = ? Z ;{vidui - uidvi} H
so that on Se
- 2n—1 n 1 n
aldz)* ! = (n — 1! 3 — 2, W du; — udv,) [] dvgduy, .
& o, i ki

Finally making the change of variables x; = u;/e, y, = v;/e we get

n

[ ma@t=m—vr2=g LI 5 {odr — xdv) [T dvedr)

J=1oay Jsii=t
1

=nt2n [ | []dydx,

Jj=1 aj B i=1

where B, and S, are the ball and sphere of radius 1. Now []7.,1/a; =
Det (L))"2, letc = n! 2 [1 dy:dx;. Thus
By .

.o
[ owwn = e (o = SR X0

Theorem (2.12). S,(F")[S**~'] = c Res (X, 0), mod Z.

Proof. By (2.10) we know S,(F"") = S,(F') for any X-connection /. Now
given any local framing s of T(R*)|5*~!, S,(F) is determined on the domain
of this framing by 4,(F,F*). Thus we can take s to be the global framing
{8/ox,,0/0y,, - - -,8/0x,,3/3y,}. For this s, F* = D. Thus 4,(F, D) determines
S,(F) on §**~', and therefore

sois=1=( 40D = | da4,0.D)

= j _p(K(P) = ¢ Res (X, 0) .

3. Applications

In the first part of this section we will always take »n = 2m and work in
R*™. We will start with a family X, of Killing fields, each with a singularity
at the origin. The residue, with our choice of X,, relative to suitably chosen
invariant polynomial ¢, will vary continuously for «; near 1. Thus the result-
ing foliation %, on §*™~! will have the property that §,(F"")[S$*"'] will vary
continuously in R/Z by Theorem (2.12). Now consider the fibrations
f: UQRm)— 8§, f: SO@m) — §™1, f: Sp(m) — §*™~!, The induced foliations
(& ,) will be shown to be Riemannian foliations with trivial normal bundle
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for a; near 1. The continuous variation of S,(/")[S*™~'] will imply the con-
tinuous variation of the associated exotic class coming from RW,,,_, associated
to ¢. The result on the variation of classes in H*(FRI',) and the uncount-
ability of =, (FRI,) will follow from these considerations. At the end of this
section we will study #z.(FRI ;).

Let X,= > a;{y,0/0x;—x:8/0y;}. Let ¢ be an Ad-invariant polynomial on

gl(4m) of degree 2m. Now L = Diag ([_Oa. ‘5]) 50 o(L) = o(e, + - -, a2n)
and {Det (L)} = []i?;, «,. Thus it is easily seen that Res, (X,, 0) varies con-
tinuously with a;, -+ -, @ty

The case U(2m). Let (z;, ---,Z2,,) € C*™ and consider the l-parameter
group (z,, - - - Zom) — (€252, €825z, - . . etommiz, ) = z(5). A simple calcula-
tion shows that this is the 1-parameter group associated to

-X, = Zl a,(y;0/0%; — x,0/8y;) .
=

Lete =1(0,0,...,0,1) e C*™, and let f: U(2m) — S$*™~! be f(A) = A(e).
If f(A) = z, then f(e***A) = z(s) where ¢*** = Diag (e*¢, . - -, e***»%), Thus
z2(s) = f(AA'e**A) and so

—Xa = foA,*(Ad (A_l)xa) >

where x, = Diag (iay, - - -, i®ty,,) In u(2m), and L, is the left translation in
U(2m) by A.

In the Lie algebra u(2m), let x; be the matrix with an i in the jj position
and all other zero, y;, j < k, have an i in the jk and kj position and all other
zeros, and z;;, j < k,have a 1 in jk, —1 in kj and all other zeros. Then
{45 ¥;xs 251} form a basis for u(2m), {x;, ¥ jx, Z;5}1<~ form a basis for u(2m — 1)
and for each A

feoLgs, s maps um — 1) @ [Ad (47Y)x,] onto [X,] .
Thus
T((X)a = Las(u(2m — 1) @ [L o Ad (A72,)
Lemma (3.1). {L, ;) L4 «(2; :m)} project to a basis for
TWUEm) /T HX D)4
for «, near 1.

Proof. x; for j < nm,y;, for k <n, z;, for k <n, y;,, 2;,, and Ad (47")x,
give us a basis for u(2m) when «;, = 1, since Ad(A™Hx, =x, + -+ + x,
for &; = 1. Call this set of vectors 8, ,. Let g: R™ x U(2m) — R be given
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by gla, A) = Det (8,,,). For each A4, g(1, 4) == 0. By compactness there is a
neighborhood W of 1 in R*™ such that g(x, A) %= O for all « in W and all 4 in
U(2m). Thus for e in W, {L,,.(¥; 2n)> L 4,4(Z; :)} give us a basis for

T(UCm)[T(X,) .

Now f~(#,) is a Riemannian foliation. Let s, be the framing of the normal
bundle arising from (3.1). This is a (4m — 2)-codimensional foliation of
U(2m). Let

5% Hy(RW,,._) — H*(U(2m), R) .

Theorem (3.2). Let psh; be an element of H*™ Y (RW,,,_,). Then §*(psh;)
varies continuously in H*™ (U(2m), R).

Proof. §{~'(F’") is the Riemannian connection on the normal bundle to
HUF D). *(pshy) = oV N4, (77, 7).

Let ¢ = p;p;, a polynomial of degree 4m. Then by [9, 1.6]

p VN, 77, V%) = 4777, 7F) .
Now [4,(f~F",F9] = S,(f~'F""), mod Z. Since
H47n—1(S47n—1,R/Z) N H‘”’“‘(U(Zm),R/Z)

is an injection, and S,(/”’) varies continuously, so does f*S,(F"") = S.(f"'F")
and hence also §*(p4,).

The case SO(4m). As in the case of U(2m), let f(4) = A(e) where ¢ =
©,0,---,0,1) in R*". The integral curve for — X, through z = (x,, 5, -+ -
Xyms Yam) 18

(- -, x;co8a;8 — y;sina;s, x;sina;s + y;cos a;s, «--) = z(s) .

Now let

. cos ;8§ —Sina;s
D=D1ag([_ 7 J])
Slnajs COS aij

Then z(s) = Dz, so if f(A) = z, then f(DA) = z(s).

Now in the Lie slgebra so(4m), let x;; for j < k be the matrix with —1 in
jk and +1 in kj position and all other zero. Iet v; = x,;_,,,;. Then {x;,} form
a basis for so(4m) and

D = exps(e,v, + -+ + Um¥sm) -

Let v, = aw, + +++ + UV, and write D = e*®=. Then f(AA™'es=A) = z(s)
and so
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fsLa,<(s0(dm — 1) @ [Ad (A7) = [X, ], -

Now just as in the U(2m) case we have
Lemma (3.3). {L,, .(x;.n), ] & 4m — 1} project to a basis for

T(SOEm)/f~Y(Z ) for a; near 1 .

As in the case of U(2m), f~}(¥ ) is a family of Riemannian foliations,
77'(F”") is the Riemannian connection on the normal bundle, §* is determined
by f~'(F”") and F* where s is given by the framing of (3.3). Then just as in the
proof of (3.2) we have

Theorem (3.4). *(psh;) varies continuously.

Note that the remark following (3.2) applies equally well to SO(4m).

The case Sp (m). We will think of Sp (m) C U(2m) and so sp (m) C u(2m).
sp (m) consists of matrices (flz j:) with 4, = — AF, A, = AT, A, = AF. Let
r;have aniin jj and —iinm + j, m + jfor j < m. Let v;, have an{in jk
and kjand —iinm +j,m+ kand m + k,m + j for j < k < m. Let z;,
havea +1injk, —1inkj, +1inj+ m k+mand —1in k +m,j+ m
forji<k<m Letwy haveiinjm+k, k,m+j,j+mk, andk +m,j
forj<k<m. Lletu;,have +1inj,k +m, +1ink,j+m, —1inj+ m,
k, —lin k + m, k. Then {r;, v;;, 24, Wz, 4;;} form a basis for sp (m). Let
r,=ai; + -+ + @prp, and e™* = exp sr,. Let z e C*™. Then e"=’z = z(s)
is the integral curve for

2m a a
X, = a-{——y-O +x~i+y- m —X; }
_72;1 J g axj J ayj J+2 axj+2m j+m ayj+2m
An easy computation shows Res, (X, 0) is as for the previous X,. A lemma
identical to Lemmas (3.1) and (3.3) shows that

L (v om for j < 2m, z;,, for j < 2m, w; ,,j < 2m, u; ,,j < 2m}

projects to a basis for T(Sp (m))/T(f~*X,). Using this framing and f~!(F"") we
get, as for U(2m) and SO(4m) that §*(p,h;) varies continuously.

Theorem (3.5). The map H™"'(RW,,_,) — H™ W(FRI,,_,) is injective.
The classes {psh;}, with constitute a basis for H™ (RW,,,_,) all vary contin-
uously.

Proof. In §1 we have described a basis {p;A,;} for H**"*(RW,,_,). Con-
sider the polynomials {p,p;} and label them ¢, ;. The foliation f~'(#,) in
Lemma (3.1) gives rise to a commutative diagram :

H™YRW,,,_)—Z—Hm~Y(U(2m))

H™ (FR yp_2)
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Now, if the map H'*"'(RW,,,_,) — H**"(FRI,, _,) were not injective, then
some linear combination 3 ¢ ;psh; would be identically zero in
H™ " FRI o).

Let ¢; = ¢.;,,. Then for all #,,

(X ¢rppbsh) =0, mod Z .
But S, (F")[S*""'] = cp,(ad, - - -, @3n) [ met;, mod Z and so
¢ X (crofad, - -, i) ma) e Z

for all choices of «, - -+, a,,. This is impossible. Now we have already seen
that all of the cohomology classes §*(psh;) vary continuously.

The homotopy of BRI, FRI',. Let X, be the family of Killing fileds
given in the beginning of § 3. Let £, be the resulting Riemannian foliation
on $*™~! with I’/ the Riemannian connection on the normal bnndle. Consider
the fibration

FRI,,_,— BRI, _,— BO(4m — 2) .

Let f,: S*~' — BRI ,,_, be the map which classifies &,.

As in the previous theorem, let ¢,, - - -, ¢, be the polynomials p,p; where
{psh;} form a basis for H**~"(RW,,_,). Let f,: S** — BRI, _, be the map
which classifies #,. Let ¢;(«) be the element in H**~(BRI[,, _,, R/Z) cor-
responding to S,(F’”'). Define

@: wym o (BRym_)) > R/Z + --- + R/Z

-
r

by O(IfD) = (F*(@ (@S], - - -, F*(p(@)[S7']). Choosing f = f, we get

O[] = SpuF)IS™, - - -, S, (7S]
(E?%(“l—“%ml o u) ,

w; na;

For various choices of @ = («y, - - -, @,) We get a surjection onto a neighbor-
hood of the identity. Thus

Theorem (3.6.) =, (BR[,,._,) and z,, (FRI,,._,) map surjectively on-
to @ R/Z, where r = dim H*" '(RW,,,_,). Thus these homotopy groups are

not countably generated.
Note that these homotopy groups were first studied in [12] using methods
of [1].
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